DUALLY FLAT STRUCTURES FOR q-GAUSSIAN FAMILIES

HIROSHI MATSUZOE

Nagoya Institute of Technology, Nagoya, Japan
e-mail: matsuzoe@nitech.ac.jp

A q-Gaussian distribution is a generalization of an ordinary Gaussian distribution. It was introduced in anomalous statistical physics. The set of q-Gaussian distributions include many useful probability densities such as an ordinary Gaussian distribution, a Cauchy distribution, a Student’s t-distribution and a semi-circle distribution.

In information geometry, it is known that the set of ordinary Gaussian distributions is regarded as a Riemannian manifold with dually flat affine connections. More generally, an exponential family is regarded as a dually flat space [1]. In the q-Gaussian case, though a q-Gaussian family can be regarded as a statistical manifold or a dually flat space, its structure is not unique. However, this variety of geometric structures characterizes the geometry of α-divergences, β-divergences, and normalized Tsallis relative entropies [3].

Recently, Mori [5] showed that a q-Gaussian family admits dually flat affine connections in the sense of the ordinary Gaussian family. This fact implies that the q-Gaussian family naturally has another dually flat structure which has the invariant property in information geometry.

In this presentation, we give the dually flat structure of the q-Gaussian family under Mori’s dual affine connections. To elucidate the relations of another dually flat structures, we consider the sequential structure of escort expectations [2, 4].

Acknowledgement This research was partially supported by JSPS (Japan Society for the Promotion of Science), KAKENHI (Grants-in-Aid for Scientific Research) Grant Numbers JP26108003, JP15K04842 and JP16KT0132.

References