CONVERGENCE IN LAW OF PARTIAL SUMS OF LINEAR PROCESSES IN P-VARIATION NORM

RIMAS NORVAIŠA and ALFREDAS RAČKAUSKAS
Vilnius University, Vilnius, Lithuania
e-mail: rimas.norvaisa@mii.vu.lt, alfredas.rackauskas@mif.vu.lt

Let X_1, X_2, \ldots be a sequence of short memory linear processes, S_n be the nth partial sum process $S_n(t) = X_1 + \cdots + X_{\lfloor nt \rfloor}$, $t \in [0, 1]$, and $2 < p < \infty$. We shall discuss a convergence in law of $n^{-1/2}S_n$ to a Wiener process in p-variation norm. In the case when X_1, X_2, \ldots is a sequence of independent identically distributed real-valued random variables, the result is proved in [1].

References