PERSISTENCE OF HERMITE PROCESSES

CHRISTIAN MÖNCH and FRANK AURZADA
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: moench@mathematik.tu-darmstadt.de

The persistence probability \(P(T) \) of a real-valued process is the probability that the process stays below a given value up to time \(T \). It is conjectured that \(P(T) = T^{-(1-H)+o(1)} \) for any \(H \)-self-similar process with stationary increments and continuous paths. Until recently, this had only been rigourously verified for Fractional Brownian Motion [2]. I will discuss the case where the processes under consideration are Hermite processes – close relatives of fractional Brownian motion, albeit in general non-Gaussian. As a tool, I will present a decorrelation inequality, which is reminiscent of Slepian’s lemma for Gaussian processes and may be of independent interest. The talk is largely based on the article [1].

References
