SPATIAL PROPERTIES OF ONE-DIMENSIONAL BROWNIAN FLOWS

E.V. GLINYANAYA

Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev

e-mail: glinkate@gmail.com

DEFINITION ([11]). The Harris flow with the local characteristic Γ is a family $\{x(u, \cdot), u \in \mathbb{R}\}$ of Brownian martingales with respect to the joint filtration such that:

1) for every $u \in \mathbb{R}$, $x(u, 0) = u$;
2) for every $u_1, u_2 \in \mathbb{R}$, $u_1 \leq u_2$, $t \geq 0$, $x(u_1, t) \leq x(u_2, t)$;
3) for every $u_1, u_2 \in \mathbb{R}$, $d \langle x(u_1, \cdot), x(u_2, \cdot) \rangle(t) = \Gamma(x(u_1, t) - x(u_2, t)) dt$.

REMARK. In [1] the existence of x is proved for real continuous positive definite function such that $\Gamma(0) = 1$ and Γ is Lipshits outside any neighborhood of zero. In the case when $\Gamma = 1_{[0]}$ the existence of x was proved by R. Arratia [2], and the flow was called by his name.

Depending on the properties of Γ, the coalescence of particles can happen. We are interested in the asymptotic properties of obtained clusters and their number. The key tool in our investigation is a mixing property of the flow with respect to the spatial variable.

THEOREM 1 ([3]). The process $\{x(u, t) - u, u \in \mathbb{R}\}$ is stationary and, under the condition $\Gamma(u) \to 0$ as $|u| \to \infty$, has the mixing property.

THEOREM 2 ([3]). Let $\text{supp} \Gamma \subset [-c, c], c > 0$. Then for the strong mixing coefficient α of the process $\{x(u, t) - u, u \in \mathbb{R}\}$ we have $\alpha(h) \leq 2 \sqrt{\frac{2}{\pi}} \int_{h-c}^{h+c} e^{-x^2/2} dx$.

Using the central limit theorem for a stationary sequence proved in [4], one can get the asymptotic distribution for the normalized number of clusters in the Arratia flow.

THEOREM 3. Let $\Gamma = 1_{[0]}$ and $\nu([u_1, u_2]) = \#x([u_1, u_2], t)$.

Then, for every $t > 0$, $\sqrt{n} \nu([0, u]) \to N(0, \sigma^2_t)$, as $n \to \infty$, where $\sigma^2_t = \frac{2t}{\sqrt{n}}$.

COROLLARY 1. Let $\Gamma = 1_{[0]}$. Then $\sqrt{t} \nu([0, 1]) - \frac{1}{\sqrt{t} \sqrt{n}} \to N(0, \sigma^2_t)$ as $t \to 0$.

References

1. T.E. Harris, Coalescing and noncoalescing stochastic flows in \mathbb{R}_1, Stochastic Processes and their Applications 17, 1984, pp. 187–210. MR0751202