SCALING LIMIT FOR THE CONDENSATE DYNAMICS IN A REVERSIBLE ZERO-RANGE PROCESS

MICHAIL LOULAKIS
National Technical University of Athens, Greece
Foundation for Research and Technology Hellas (FORTH)
e-mail: loulakis@math.ntua.gr

Zero range processes with decreasing jump rates can equilibrate in a condensed phase when the particle density exceeds a critical value ρ_c. In this phase a non-trivial fraction of the mass in the system concentrates on a single site, the condensate. At suitably long time scales, the location of this site changes. Beltrán and Landim [1] have studied the motion of the condensate for zero-range processes on finite sets and have shown that – observed at the right time scale – it converges to a random walk on this set. In this work we consider a supercritical nearest neighbor symmetric zero-range process with N particles on the discrete torus $\mathbb{Z}/L\mathbb{Z}$, in the thermodynamic limit, i.e. $L, N \to \infty$, $N/L \to \rho > \rho_c$. We use a coupling argument to obtain lower bounds for the jump rate of the condensate, mixing time estimates and potential-theoretic tools to show [2] that the scaling limit of the condensate dynamics is a Lévy process on the unit circle with jump rates inversely proportional to the jump length.

Acknowledgement Supported by the ESF and Greek national funds through the NSRF Research Funding Programmes Thales MIS377291 and Aristeia 1082.

References

1Joint work with Inés Armendáriz and Stefan Grosskinsky.