CODING OF POISSON RANDOM SETS: LARGE DEVIATIONS

MIKHAIL LIFSHITS
St. Petersburg State University, St. Petersburg, Russia
e-mail: mikhail@lifshits.org

This is a joint work with F. Aurzada (TU Darmstadt).

Consider a random set (or "picture") $S := \bigcup \mathcal{B}(\xi_i, R_i)$ where $\{\xi_i\}$ is a Poisson point configuration in the d-dimensional cube $[0, 1]^d$, $\{R_i\}$ are non-negative i.i.d. random variables independent of the configuration and $\mathcal{B}(\xi, R)$ denotes the ball of radius R centered at ξ with respect to some norm in \mathbb{R}^d. Let K be the minimal number of balls needed in order to reproduce S.

We study large deviation probabilities for K and prove in some cases that

$$\Pr(K \geq n) = \exp\{-an\ln n(1 + o(1))\}, \quad \text{as } n \to \infty,$$

where the constant a may explicitly depend on d, on the distribution of radii, and on the norm under consideration. In many cases the problem of finding the value of a remains open although some upper and lower bounds are available.

This asymptotics has natural corollaries in high dimensional quantization problems, cf. [1] and [2].

Acknowledgement The work was supported by grants SPbSU-DFG 6.65.37.2017 and RFBR 16-01-00258.

References
